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4, = m (a f 0)$, CD (2g f cc - 0) 
where m(8) is the corresponding solution for the Riemann surface. 

These constructions using formulae (3.1), (3.2) may be carried out to obtain the solution 
of the diffraction problem for a wave f (a r, z, cz -j- @H(I) - cos (o -+- 8)) by a wedge and a half- 
plane. 

The author is indebted to V.V. Tret'yakov for useful discussions. 
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WEAKLY LINEAR OSCILLATIONS OF THE RADIUS OF A 

VAPOUR BUBBLE IN AN ACOUSTIC FIELD* 

N.A. GUMEROV 

Non-linear heat-and-mass exchange effects between a vapour bubble and a 
surrounding liquid under periodic pressure oscillations generated by an 
acoustic field of length significantly greater than the radius of the 
bubble are investigated. Based on a closed system of equations for the 
spherically symmetric processes around an isolated bubble /I/, the 
method of multiple scales 12, 31 is used to derive asymptotic equations 
for the behaviour of the average bubble radius, accurate to the second 
order in the field amplitude. 

Linear and weakly linear oscillations of vapour bubbles in acoustic fields have been 
studied quite extensively, and the main results have been summarized in the literature /I, 4/. 
The most comprehensive investigation of the "smoothed heat transfer effect" for vapour bubbles, 
that is, the variation of the average bubble radius over a large number of periods due to the 
non-linearity of heat-and-mass exchange, may be found in /4/. This paper departs from previous 
publications on "smoothed heat transfer" in its systematic allowance for the non-equilibrium 
conditions of the phase transitions, which, over a certain parameter ranqe, exert a decisive 
effect on the dynamics of the average bubble radius; the non-uniform vapour temperature in 
the bubble is also taken into account. In addition, application of the method of multiple 
scales has justified certain assumptions previously adopted in applications of the averaging 
method to derive equations for the dynamics of the average bubble radius. 

1. Statement of the problem. WB shall study the behaviour of a spherical vapour bubble 
in an unbounded space occupied by an ideal incompressible liquid, with the pressure at infinity 
Pm varying periodically about an equilibrium value PL = Pa (T*)* T, = T, (T is thetempera- 
ture, the subscript s denotes the parameters on the saturation curve and the asterisk 
denotes the parameters of the unperturbed state): 
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P- = P* (1 + w(4)* ‘p (6 = qJ (t t Bdo), I “p I < 1 (1.1) 
where rp is a periodic function that can be expanded in Fourier series, o is the angular 
frequency, t is the time and e is the relative amplitude of the perturbation, which is 
assumed to be a small parameter &<I. 

There is a wide range of situations involving non-linear non-equilibrium dynamics of 
vapour bubbles, in which one can ignore surface tension and the temperature jump across the 
phase interface; in addition, one can assume that the vapour is an ideal gas, the homobaric 
condition holds and the processes near the bubble are spherically symmetric /If. Under these 
conditions a closed system of equations and boundary conditions for heat-and-mass exchange 
between bubble and liquid in the variable pressure field may be written as follows /I/: 

pg (0 = RgTg (r, t)p, (r, t), PI = const 

(1.2) 

Here r is a radial coordinate, measured from the centre of the bubble: p,w,q and 5 are 
the pressure, radial velocity, heat flow at the boundary and rate of vaporization per unit 
surface area, a is the bubble radius, *;? R,,l,c,h are quantities assumed here to be constant: 
the adiabatic exponent of the gas, the gas constant, the specific heat of vaporization, the 
specific heat (for a gas - at constant pressure) and the thermal conductivity, and @(P+z. r,) 
is the acommodation coefficient, which is assumed to be a known function of the pressure and 
temperature. The subscripts g and 1 refer to the gas and liquid, respectively, the parameters 
at the phase interface are given the subscript a. 

2. Method of solution. The space-time transformation (r, t) -+ (n, t), where n = r/a (t) (alar-+ 
n-W*. a/at- aiat - (a-'daldt)qd/&), reduces the heat Eqs.(l.Z) to problems in domains 
with fixed boundaries. The radial velocities ~~,w~,~~* and the gas density pg are expressed 
in terms of the other unknowns, which are expanded in asymptotic series: 

T, = T, (@0 + 8% + e*@, + . . .), Ta = T, (u@@) + eul@) + .&z(a) + . . ,) (2.1) 

a = a0 (1 + eel + eaaa -I- . . .), qu = xguo-l (q + ewl + &*wZ + . .) 

PET = P* (PO + &PI + &"Pa -t . * .), pa = hc&T*a-~ (q*@) + 
Eqlcn) + &&~a) + . . .) 

The procedure for constructing uniformly valid expansions by the method of multiple 
scales /2/ is similar to that described in /3/. As functions of t, the unknowns are assumed 
to depend on a sequence of time variables (tr), tx = E't (k = 0, 1,2, . . .) and the operator of 
differentiation with respect to t is expanded in an asymptotic series: 

dldt = a/at, + eaiat, + e*aiat, + . . . (2.2) 

The function v(t) of (1.1) is assumed to be a function of the ')fast" time t only. 
Substituting (l.l), (2.1),(2.2) into (1.2) and collecting terms in like powers of &;one can 

show that u,(b) E 1, q,,(a) z 0 (CL = 1, g), p0 s 9,, so 1, w0 G j0 z 0, a, = a, (tr, t,, . . .), finally obtaining 

the following linear inhomogeneous systems of equations for the m-th approximation (m > a): 
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(2.3) 

Here f,,(“) are functions depending on approximations of order less than m(a == l,g,a,w, p, j7 0). 

The condition for the existence of a to-periodic solution of (2.31, i.e., a solution 
that can be expanded in Fourier series as a function of the "fast" time, is /3/ 

where x,,O is the complex amplitude. This yields a system of the form (2.3) for the complex 
amplitudes in the m-th approximation, with the factor ion in place of the operator i?l&,. 

On the assumptionthat the integrals exist, the solution of the inhomogenous heat-transfer 
problems for the complex temperature amplitudes in the liquid and in the gas is /3/ 

WJ - &WC - 9 -'[-LA-(~) + G%((rl)l 

&!:== k,p:,, + ~-l[&,,&(~)+ &!,+I)] 

A m,, = @n,, - G%(i), B,,, = (@“,,n - G@) (1) - kvp:m)/S (1) mn n 

(2.5) 

Thus, it follows from (2.3)-(2.5) that in the m-th approximation the unknown complex 
amplitudes satisfy a linear inhomogeneous algebraic equation: 

4,x,,, = y,, (2.6) 

si, -1 0 0 -% 
0 X&=snrW -1 0 0 

1 
L,= In 0 7i_~-'s, + k,@' -Q") -1 

0 0 a,d,‘k - a,d,’ 1 
0 0 k&-1’ - k.k;’ (/a$) + khh!f’) - 1 

L, = (aL,. uL. pm,, EL,, i,,)T 

Y mn = (f%, fg,?, f:? -- F%,, f!!‘,“, f:‘n” - k,k;‘[P$j, + krk,‘F$,JT 

The superscript T denotes transposition. 
Previous studies /6, 7/ considered the problem of a steadily pulsating bubble in a 
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monochromatic acoustic field; it was observed that solutions exist at any frequencies a#O, 

i.e., if % # 0 we have detL,# 0 and the solution X,, exists and is unique. If n = 0 
the matrix of the system becomes singular and rank Lo= 4. A necessary and sufficient con- 
dition for the existence of a solution is then rank (L,[Y,,) = 4, where (L,)Y,,) is the 
augmented matrix of the system in the m-th approximation with n = 0. This condition, when 
developed, is 

(2.5) 

F”’ _ liInFw Y 010 - 
S-r0 n’“== s sf!% all* 
n 1 

F$,$=lirnF$,=~~~j!$d~, 6,-=!$& 
*n+ 0 

Thus the system will have a to-periodic solution only if condition (2.7) is satisfied. 
In that case the solution is unique up to a solution of the homogeneous system (2.3): 

a nl= a, (tl, t,, . . .I, lo, = pm sz 8 m E jm 3 0, &I s 0 ) u!f’ s 0 

3. First approzimation. It follows from (1.11, (1.2) and (2.1)-(2.3) that to a first 

approximation (m = 1): 

jl"'= 0, a = 1, g, 8, i; P = j? = -a&'aa,/dt,; ji" = --cp (3.1) 

The condition for to-periodic solutions to exist gives 

(a, + 6,) aa,/at, = -k,2kV-‘k~x8q+,” (3.2) 

Integrating with respect to t,, we get 

1/,a,2 + &a,, = -k,2k,-1k~xg qo’t, -I- c (tz, t,, . . .) (3.3) 

Assume that condition (3.2) holds. If n#O it follows from (3.1) that the inhomo- 
geneity vector in (2.6) is Y,,, =(O, ---(Pi'. 0, 0, O)T. Hence, using Cramer's rule, we find that 

a;, = --(PnoA:'/An, CI = a,w,p,&j; A,, = det L, (3.4) 

A:;' = [a,d,‘k, (I- k,k;1)2 + ‘/,y-‘k,k;‘s, + k,klhh”] h:’ + 

k,k,‘kk (a&‘k, + 1/3y~?sn) ht’ + 1/3y1a0d;1s,, AI,@ = s,Ar) 

A?' = - s, [a&' $ k,k,’ (hj:’ + k, h:;‘)], A:;' = - s,k, (a&’ + h’R’) 

AZ’ = ~,,a,&’ [k,k;‘k~.h$) - (1 - k,k;‘) h$‘], A,, = s,,*a;"x z A@) - A?' g UJ II 

The quantity k, in (3.4) is negligible compared with unity in the coefficients (1 - kp). 
Eqs.(3.4) are in agreement with those obtained in /6/ for steady oscillations of a 

vapour bubble in a monochromatic acoustic field. An analysis of the complex amplitude of 
oscillations of the bubble radius may be found in /l, 4, 7/. 

The complex amplitudes of the temperature distributions in the phases 
from (2.5) and (3.1): 

Ultl" = a;,~-'e,-(rl). u$?' = k,p,, + (8;. --,&) q-lS,(?)/S,(l) 

If n = 0 the determinant of the system vanishes. The solutions may 
to a solution of the homogeneous system, from Eq.(2.6) and the consistency 

wloo = k,*k~‘kla, (a, + 6,)~‘(p,“, &,” = k;lkyk~lwlOO 

iloo = - q0 . ho = qb”. alOo = alOo (tl. t,, . . .) 

may be determined 

(3.5) 

be determined, up 
condition (3.2): 

(3.6) 

By (3.2) and (3.3), if (poO# 0 then, depending on the sign of cp,',the bubble will 
either grow without limit or shrink to zero on the average. This is actually due to the fact 

that the pressure oscillates about the non-equilibrium pressure P* (1 -i-Woo): But if 'poO = 0 
(the system is on the average at equilibrium), the bubble radius in the first approximation 
will oscillate steadily (c?‘a,/at, = 0), the average radius of the bubble varying on a "slower" 
time scale than t, (non-linear effect). 

4. Dynamics of the average bubble radius. Let 'PO0 = 0. 

all unknown functions except perhaps alo ' are independent of 
alOo = 0, letting a, have the meaning of the average radius. 
(2.1)-(2.31, we obtain the inhomogeneities fz@) in the second 

Then to a first approximation 
tl. We shall assume that 

Hence, using (1.11, (1.2) and 
approximation (m = 2): 

(4.1) 
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where fb BT are the non-dimensional derivatives of the accommodation coefficient with 
respect to the pressure and temperature, respectively, which characterize the "non-linear 
inhomogeneity" of the phase transition. 

A sufficient condition for system (2.3) to have &-periodic solutions when m = 2 is 
that the zero harmonics faota) satisfy condition (2.7). The zero harmonic of the product of 
two b-periodic functions r(l) and 50) with means so(l)* = r,,(QO = 0 is computed from the 
definition (2.4): 

where the bar denotes complex conjugation. 
Evaluating the appropriate integrals with respect to 1, we can write condition (2.71 

as a differential equation: 

(4.2) 

If we assume that the pressure field is monochromatic (cpc = 1, "p,: = 0, n > i), the 
phase transitions are quasi-equilibrium (d,-+O) and the bubble is temperature-homogeneous 
(h,fi'f = V$,,, corresponding to the principal term h,(8) of the asymptotic expansion as 
S" + O), Eqs.(4.2), (3.4) agree with the equation for the dynamics of the average bubble 
radius obtained in /4, Ii/. 

Figs.land 2 present the results of computations with Eq.(4.2) for a system with the 
thermophysical parameters of water and vapour at a pressure P.= O.iMPa we have used the 
notation v= (QQ)W%~ A = %(e&)". Lacking reliable figures for the accommodation coefficient, 
the curves shown in the figures were computed at the following 8. values: 4x10-4 (the dotted 
curves), 0.04 (the solid curves), and the 0.4 (dash-dot curves); the dashed curves correspond 
to a quasi-equilibrium phase transition scheme. The "non-linear inhomogeneity" parameters 
in these cases were taken as &= 0, BT= 1.5, in accordance with the theoretical formula of 
Landau ,!4/. It was found that variation-of BT within reasonable limits had little effect on 
the computed results. The frequency v= o&Ix) of the acoustic field, which was assumed to 
be monochromatic, was 10 k&z. 

A phase portrait of Eq.C4.2) is shown in Fig.1. The range of variation of ob was 
chosen to allow for the restrictions on the applicability of our model. The resonance values 
at which the growth rate of the bubble increases markedly are clearly visible. In the range 
of greater values the growth rate of the average bubble radius falls sharply. One interesting 
observation is that at certain radii the growth rate of the average radius is not a monotonic 
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function of the accommodation coefficient; this effect is particularly evident in the 
neighbourhood of the resonance radii. The explanation is that reducing the accommodation 
coefficient not only reduces the phase transition intensity (6= 0 indicates no phase 
transitions) but also increases the amplitudes of the oscillations and phase shifts among 
the fluctuatfons of pressure, temperature and radius; the computations show that these factors 
taken in concert make a positive contribution to the growth rate of the average radius (see 
(3.4), (4.2). Yet another peculiarity of the phase portrait is the existence of a stable 
zero in the region of large A (steadyradius) which, in the range of A values examined, was 
observed only at fi, -= 4 x 10-a ("st - Icm; see Fig.1). The existence of a steady radius in 
the region of super-resonant radii was noted in /4/. 
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Fig.2 illustrates the numerical solution of the Cauchy problem for Eq.(4.2). The curves 
for /3,= 0.4 are pratically the same as that corresponding to the quasi-equilibrium phase 
transition and are not shown in the figure. The relative positions of curves with different 
p values depend on the initial condition a,,= Q(O), as is clear from the phase portrait in 
Fig.1. In case aaoo= 10 urn and in case b no,,= 0.3 mm. 

If the thickness of the unsteady temperature boundary layer in the gas is much less than 
the bubble radius (6, = [%,/(2o)l:i<a,), there will generally be a thin boundary layer in the 
liquid, since xi <xc. Using asymptotic representations of the functions in (3.4) and (4.2) 
for large 1 s,, I':, we obtain the following equation (the high-frequency approximation): 

1 D,, I* = 1 1 - ao3ar? (on) + iom,k, J”m (1 -t i) I (I/won) 1 

H (x) = P (x)/Q (z), I (x) = R (.x)/S (z), 00 = do81Sg2 

R (I) = 1 + [(I + i)/ 1/%1 Ks, S (z) = c,, + [(I + i)if?l CIZ 

P (z) = ‘/,b,s2 _I- b,x + b,, Q (x) = ?‘2K2x2 + Kx + 1 

e, = 1 + kyS (K - 2). c1 = K - k,‘, 0, = c,K, ky’ = k,ik, 

b, = k.,,“K2 + [(I - k,,“)z - (kJ2 (2 - k,)l K f (k,“)’ (1 - kc) 

b, = k,” [I - k,S (1 - k,)l K + (1 - k,s)Z - (kv’)zk,. kc = & 

K = k:,’ (1 + k&kr.-$;). a, (0) = 6’ (3yp,ipl)X 

Here the first (negative) term in the term in curly brackets, whose contribution becomes 
dominant for at large radii or high frequencies, represents a drop of the average pressure in 
the bubble below its equilibrium value, due to the non-linearity of the Rayleigh-Lamb equation 
(i.e., the liquid at infinity is, as it were, underheated). The second (positive) term 
describes the dissipation of energy due to the phase transition in the problem with a plane 
boundary (the function H is analogous to that introduced in /3/ for high-frequency oscillations 
of a drop). The overall result of these effects is the appearance of a stable steady radius, 
which depends on the frequency and shape of the oscillations. As follows from (4.3), in the 
case of a monochromatic field with &< a0 the steady average radius is 

a,t (0) = 9 (7 - 1)' Ik,h.orJ1 I~/(~x,)]-xH (Q%) 

The author is indebted to N.S. Khabeyev for suggesting the problem and to R.I. Nigmatulin 
for helpful discussions. 
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DETERMINATION OF THE DRAG ON OSCILLATING PLATES IN A FLUID" 

V.A. BUZHINSKII and I.M. MEL'NIKOVA 

Using an approximate approach /l/, methods of determining the vortex drag 
on plates undergoing harmonic oscillations in an incompressible fluid are 
considered. By means of this approach, the problem can be reduced to 
determining the velocity intensity coefficients (VIC's) on the edges of 
the plates and computing a certain integral over the boundary contour. 
Mathematically, the VIC'S are analogous to the stress intensity 
coefficients (SIC's) /2/ in destruction mechanics. The most important 
exact solutions and closed expressions for the VIC's are presented for 
the planar and the spatial problems. To obtain numerical solutions, a 
version of the direct boundary-element method (BEM) is developed. 
Examples of applications of the finite-element method (FEM) and the BEN 
to specific problems are given. Methods for improving the accuracy of 
the numerical solutions are proposed. The results of experimental 
investigations are presented and compared with the computations. 

1. Fozmdation of the prob2em. Consider the oscillations of a plate in an incompressible 
fluid at rest at long distances. We introduce the following notation: R is the characteristic 
linear dimension of the plate, v, and o are the characteristic velocity amplitude and 
oscillation frequency of the plate, p and Y are the density and the kinematic viscosity of 
the fluid, and Re = v,,RIv and Sh = Rolv, are the Reynolds and Strouhal numbers, We shall 
assume that the condition 

is satisfied. 

Re-x <Sh-'I*< 1 (1.1) 

The condition establishes a relation between the orders of magnitude of the thickness of 
the oscillating boundary layer, the dimensions of the eddy domain in the vicinity of the sharp 
edges, and the dimensions of the plate /l/. Outside small domains of essential eddies the 
motion of the fluid will be assumed to be a potential one. 

We represent the velocity potential of the fluid in the form Q, (r, t) = cp (r) cm at, where 
r is the position vector of a point and t is the time. 

We have the boundary condition @/an = Tu,(r) on the surface of the plate. The "minus" 
and "plus" signs correspond to the "positive" and "negative" sides of the plate, which is 
assumed to be infinitely thin and n denotes the outer normal unit vector. 


